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Abstract. The analytic embedded atom method (EAM) type many-body potentials of hcp rare earth metals
(Dy, Er, Gd, Ho, Nd, Pr, and Tb) have been constructed. The hcp lattice is shown to be energetically most
stable when compared with the fcc and bcc structure, and the hcp lattice with ideal c/a. The mechanical
stability of the corresponding hcp lattice with respect to large change of density and c/a ratio is examined.
The phonon spectra, stacking fault and surface energy are calculated. The activation energy for vacancy
diffusion in these metals has been calculated and the most possible diffusion paths are predicted. Finally,
the self-interstitial atom (SIA) formation energy and volume have been evaluated for eight possible sites.
This calculation suggests that the crowdion and basal split are the most stable configurations. The SIA
formation energy increases linearly with the increase of the melting temperature.

PACS. 34.20.Cf Interatomic potentials and forces – 66.30.Fq Self-diffusion in metals, semimetals, and
alloys – 61.72.Ji Point defects (vacancies, interstitials, color centers, etc.) and defect clusters – 61.72.Bb
Theories and models of crystal defects

1 Introduction

Since 1794, the year of Johan Gadolin’s discovery of yt-
trium, rare earth materials have contributed to the im-
provement of civilization. The rare earths were once sci-
entific curiosities, but modern methods of separation and
new applications, particularly in the fields of atomic en-
ergy and metals research, make them commercially valu-
able. Rare earths are used as catalysts in automotive cat-
alytic converters, as iron and steel additives, as ceramic
and glass additives for their decolorizing properties, as
light-emitting substances (phosphors), and as components
in electronic devices, permanent magnets, light bulbs, and
in various aspects of research. Rare earths are expected
to play an important role in advanced materials, which
are essential for industrially high quality and high perfor-
mance products. One of the basic concepts to understand
the superb performance of these materials is the atom-
istic interaction of the rare earth metals. It is the basis
for computer simulation of defects and prediction of their
properties. The reliability of the atomistic simulations de-
pends on the accuracy of the modeled atomic interactions.
While first-principles methods constitute the most reliable
approach to determining atomic interactions, application
of these methods to systems with more than a few hundred
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atoms is not feasible. Most atomistic simulations of defects
in metals are performed using semiempirical or empirical
descriptions of atomic interactions. Only a few ab initio
studies have been devoted to defects in metals or alloys.
Domain and Becquart [1] have reported the ab initio cal-
culations of defects in Fe and dilute Fe-Cu alloys. Han
et al. [2,3] have studied the self-interstitials and vacan-
cies in V and Mo with an extensive ab initio calculations
recently.

Properties of hcp metals have occasionally been cal-
culated using empirical pair potential interactions, but
application to hcp metals is less common than to cubic
metals [4,5]. Recently, many-body potentials have been
developed for hcp metals [6–13]. The potentials proposed
by Igarashi et al. [6] for the eight metals, Be, Hf, Ti, Ru,
Zr, Co, Mg, Zn were fitted to several physical parame-
ters, including the c/a ratio, but not to any data that
arise from atom-atom interactions inside the normal equi-
librium lattice spacing. The extreme hard pair repulsion
term leads to very large values of interstitial atom forma-
tion energy. Moreover, Bacon found that some the poten-
tials produce an unstable crystal when used to model twin
boundaries [5]. The modified EAM potentials proposed
by Baskes and Johnson [7] with angular forces were ap-
plied to eighteen hcp metals, including hcp rare-earth met-
als. They studied the vacancy, divacancy, stacking fault
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and surface, but the divacancy was unbound in all of the
metals considered except Be. Moreover, no information
was given about the application of their model to self-
interstitial atoms. The many-body potentials for hcp met-
als proposed by Johnson et al. [8–10] and Ackland [11,12]
are only appropriate for metals such as Mg, Ti, and Zr,
which have a c/a lattice parameter ratio close to the ideal
value.

Based on these work, we have constructed new ana-
lytic modified EAM many-body potentials for hcp metals
currently, and calculated the thermodynamic properties
of Mg-RE alloys [13,14]. These potentials reproduce ex-
actly the observed c/a ratio and all five elastic constants
for each metal considered, and guarantee the stability of
the hexagonal structure with respect to hcp with ideal
c/a, fcc, and bcc crystal structures. The formation and
migration energies of the vacancy, the activation energy
for self-diffusion of monovacancy, the divacancy formation
and binding energies, and the activation energy for diffu-
sion by a divacancy mechanism, stacking fault and surface
energies, and the self-interstitial atom (SIA) formation en-
ergy have been calculated. These calculations agree well
with the experimental data available. In the present pa-
per, these potentials are applied for hcp rare earth metals
and properties of various defects are evaluated.

2 Determination of the potential parameters

Due to the fundamental invariance of physical space un-
der continuous translations or rotations, corresponding to
the homogeneity and isotropy of space, the potential en-
ergy must be invariant under any change of the origin of
the coordinates or under any rotation of the coordinates
axes. However, in the previous paper [13,14], the interac-
tion model is not invariant under these rotations. We have
improved the potentials in the present paper.

As described previously, parameters should be intro-
duced to correct the Cauchy relations, and the number of
parameters should be the same as the Cauchy relations
for the specific crystal. Moreover, this number is also re-
lated to crystal symmetry, i.e., the number of independent
parameters of symmetry operation for the seven crystal
systems. There are 6 parameters for triclinic, 4 for mono-
clinic, 3 for orthorhombic, 2 for tetragonal, trigonal, and
hexagonal, and 1 for cubic. In the present model, the num-
ber of modification terms is the same as the Cauchy re-
lations, each term only has one parameter, to ensure the
invariance of the potential. The arguments of the modifica-
tion terms are the sum of high orders of electron density
to correct the discrepancy of the linear superposition of
atomic electron density.

The physical properties fitted within this scheme are
the cohesive energy, Ec, vacancy formation energy, E1f ,
five independent second-order elastic constants, and the
two lattice constants of the hexagonal structure, a and c.
All these quantities are summarized in Table 1.

In this scheme, the basic equation of the total energy
of a system of atoms is

Et =
∑

Ei (1)

where the contribution from the atom at site i is

Ei = F (ρi) +
1
2

∑
j

φ(rij) + M(Pi) + N(Qi) (2)

The energy modification terms are empirically taken as
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where Pe and Qe are their equilibrium values. The host
electron density is taken in the original form

ρi =
∑

j

f(rij) (5)

and the arguments of the energy modification terms are
taken as

Pi =
∑

j

f2(rij) (6)

Qi =
∑

j

f3(rij) (7)

In the present paper, only one electron density function is
used [15], it is defined as

f(rij) = fe

(
r1

rij

)4.5 (
rce − rij

rce − r1

)2

(8)

where the parameter fe is taken as 1 as was done by
Johnson [9]. f(r) is truncated at rce, rce = r8+kc(r9−r8),
r8 and r9 are the 8th and 9th nearest neighbor distance
for a perfect hcp crystal with its actual c/a ratio respec-
tively, kc is another adjustable parameter, which ensures
no oscillation in the pair potential and the crystal stabil-
ity, and it is listed in Table 2. f(r) is 0 if r is larger than
rce.

The embedding function F (ρi) takes the same form as
those used by Johnson and Oh [8]:

F (ρi) = −F0

[
1 − n ln

(
ρi

ρe

) ](
ρi

ρe

)n

(9)

where F0 = Ec − E1f . ρe takes its equilibrium value. n is
an adjustable parameter and its specific value for each ele-
ment is determined by fitting the empirical energy-volume
relationship of Rose et al. [20], which ensures reasonable
response for atomic spacing just inside the first-neighbour
distance.
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Table 1. Quantities used in the fitting of the potentials. Values of a and c have been taken from Barrett and Massalski [16],
values of Ec from Kittel [17] and vacancy formation energies E1f from Baskes and Johnson [7], E1f of Pr and Nd from de Boer
et al. [18]. Values of elastic constants from Brands [19]. a and c are in nm, Ec and E1f in eV and Cij in GPa.

Dy Er Gd Ho Nd Pr Tb

a 0.35923 0.35590 0.36315 0.35761 0.36582 0.36702 0.35990

c 0.56545 0.55920 0.57770 0.56174 0.59010 0.59140 0.56960

Ec 3.04 3.29 4.14 3.14 3.40 3.70 4.05

E1f 1.22 1.32 1.13 1.27 1.24 1.24 1.18

C11 74.0 84.1 66.7 76.5 54.8 49.4 69.2

C12 25.5 29.4 25.0 25.6 24.6 23.0 25.0

C44 24.3 27.4 20.7 25.9 15.0 13.6 21.8

C13 21.8 22.6 21.3 21.0 16.6 14.3 21.8

C33 78.6 84.7 71.9 79.6 60.9 57.4 74.4

Table 2. Parameters of the many-body potentials for hcp metals. n is in dimensionless, F0, α, β and ki are in eV.

Dy Er Gd Ho Nd Pr Tb

n 0.49 0.49 0.45 0.49 0.45 0.38 0.45

F0 1.82 1.97 3.01 1.87 2.16 2.46 2.87

α × 106 8.37331 22.1373 14.6398 11.1886 126.680 128.990 5.0892

β × 106 −6.7179 −13.430 −9.752 −8.5469 −57.981 −58.676 −5.541

kc 0.45 0.55 0.35 0.45 0.45 0.10 0.40

k−1 280.324 244.563 342.200 280.600 221.838 117.928 308.480

k0 −1361.7 −1175.1 −1670.6 −1364.1 −1067.8 −548.78 −1503.8

k1 2819.08 2410.12 3467.05 2827.28 2187.76 1091.81 3120.27

k2 −3226.2 −2738.4 −3966.6 −3240.9 −2475.0 −1207.0 −3573.4

k3 2203.04 1860.29 2701.19 2217.52 1668.49 800.211 2438.32

k4 −896.77 −754.75 −1094.3 −904.70 −669.62 −317.50 −990.61

k5 201.307 169.121 244.144 203.565 148.014 69.6499 221.738

k6 −19.211 −16.129 −23.133 −19.472 −13.894 −6.5043 −21.088

The pair potential is taken as:

φ(rij) =
m=6∑

m=−1

km

(
rij

r1

)m

(10)

The atomic interactions out to the seventh neighbor
distance are considered and it is truncated at a specific
cutoff distance rc = r7 + kc(r8 − r7).

As a similar way, the model parameters, α, β, n, and
km(m = −1, 0, 1, 2, 3, 4, 5, 6) have been determined
and listed in Table 2.

All of the pair potentials and embedding functions for
these metals are shown in Figures 1 and 2, respectively. A
distinct minimum near the nearest neighbor distance can
be found. The values of the modification functions are
equal to zero at r1 and are very small for the other atomic
distance as shown in Figure 3 for Tb. All the modification
terms M(P) are positive, and N(Q) are negative, because

they have one or two negative Cauchy pressures. Figure 4
shows the comparison of the curve of total energy for the
present model with that from the Rose equation [20].

3 Results and discussion

3.1 Structural and mechanical stability

The lattice stability of the particular hcp structure rela-
tive to the hcp structure with ideal c/a ratio, fcc and bcc
crystal structures are predicted and shown in Figure 5,
and the structural energy differences at equilibrium vol-
ume are listed in Table 3. The predictions from the modi-
fied embedded atom potentials of Baskes and Johnson [7]
(B-J potentials) are also included in the same table as
comparison. The structural energy difference is very small
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Fig. 1. Potentials for Dy, Er, Gd, Ho, Nd, Pr and Tb.

Fig. 2. Embedding functions for Dy, Er, Gd, Ho, Nd, Pr and Tb.

Fig. 3. Energy modification terms for Tb.

(0.0002 eV) for Pr and Nd, whose c/a ratios are 1.611 and
1.613, respectively. It increases with decreasing c/a ratio,
up to 0.0019 eV for Er, whose c/a ratio is 1.571. Figure 6
shows the relation between the structural energy difference
(Ehcp, ideal c/a − Ehcp)/Ec and (1.633-c/a) for the metals
considered. The squares represent the present calculations
and the dash line is the fitting result for these points. The
solid circles are the calculated results of Baskes and John-
son [7]. From this figure, it can be seen that the structural
energy difference increases nonlinearly with the difference
between ideal c/a and real c/a as described in the previ-
ous paper [14]. The structural stability of the close packed
hexagonal lattice relative to fcc and bcc is also shown in
Table 3, although the structural energy difference is small
as comparing with those from B-J potentials [4], and it
gives the same result that the fitted hcp lattice is indeed
the most stable one.
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Φαβ(rij) =
rijαrijβ

r2
ij

[
Φ′′(rij) − Φ′(rij)

rij

]
+ δαβ

Φ′(rij)

rij
+

∑
k �=i,j

F ′′(ρk)f ′(rjk)f ′(rik)
rjkβrikα

r2
ij

+
[
F ′(ρi) + F ′(ρj)

]{ rijβrijα

r2
ij

[
f ′′(rij) − f ′(rij)

rij

]
+ δαβ

f ′(rij)

rij

}

− F ′′(ρi)f
′(rij)

rijβ

rij

∑
k �=i

f ′(rik)
rikα

rik
− F ′′(ρj)f

′(rij)
rijα

rij

∑
k �=j

f ′(rjk)
rjkβ

rjk

+ 4
∑

k �=i,j

M ′′(pk)f(rjk)f ′(rjk)f(rik)f ′(rik)
rjkβrikα

r2
ik

+ 2
[
M ′(pi) + M ′(pj)

]{ rijβrijα

r2
ij

[
f(rij)f

′′(rij) + (f ′(rij))
2 − f(rij)f

′(rij)

rij

]
+ δαβ

f(rij)f
′(rij)

rij

}

− 4M ′′(pi)f(rij)f
′(rij)

rijβ

rij

∑
k �=i

f(rik)f ′(rik)
rikα

rik

− 4M ′′(pj)f(rij)f
′(rij)

rijα

rij

∑
k �=j

f(rjk)f ′(rjk)
rjkβ

rjk

+ 9
∑

k �=i,j

N ′′(qk)f2(rjk)f ′(rjk)f2(rik)f ′(rik)
rjkβrikα

r2
ij

+ 3
[
N ′(qi) + N ′(qj)

]{ rijβrijα

r2
ij

[
f2(rij)f

′′(rij) + 2f(rij)
(
f ′(rij)

)2 − f2(rij)f
′(rij)

rij

]
+ δαβ

f2(rij)f
′(rij)

rij

}

− 9N ′′(qi)f
2(rij)f

′(rij)
rijβ

rij

∑
k �=i

f2(rik)f ′(rik)
rikα

rik

− 9N ′′(qj)f
2(rij)f

′(rij)
rijα

rij

∑
k �=j

f2(rjk)f ′(rjk)
rjkβ

rjk
· (11)

The mechanical stability of the hcp lattice with re-
spect to large homogeneous expansions and compressions
has been tested by calculating the energy of the hcp crys-
tal for different values of the atomic volume and c/a ratio.
The dependence of cohesive energy on c/a ratio at differ-
ent values of atomic volume for Dy is shown in Figure 7.
It is seen that in this range of the c/a values and vol-
ume changes, no other hcp metastable configurations ex-
ist under the constructed potential. Moreover, the c/a ra-
tio corresponding to the lowest energy structure increases
with decreasing atomic volume, that is, with increasing
compression, and converges towards the ideal value, 1.633.
Clearly, under high compression the atoms tend to behave
like hard spheres owing to strong repulsion. The same re-
sults have been found for all the potentials constructed.

3.2 Phonon dispersion curves

The potential’s ability to predict phonon dispersion curves
is considered to be a useful test because phonon dispersion
curves can be measured experimentally. The hcp metals
posses lower symmetry than the metals of the fcc and bcc
phases. Therefore, it is comparatively difficult to study the
lattice dynamics of hcp crystals using many-body poten-
tials or first-principle methods. Until recently, using FS
many-body potentials, Igarashi et al. [6] calculated the
phonon dispersion relations of eight hexagonal metals (Co,
Zr, Ti, Ru, Hf, Zn, Mg and Be). However, there are some

mistakes in their expressions of the dynamical matrix and
force constants as shown below. Another approach was the
calculations of phonon spectra of Sc, Y, Tb, Ho and Lu
with the rare earth metal pair potential by Singh [21].

Using the Born-von Karman lattice dynamics [22] and
the present potentials, the force constants are:

see equation (11) above

In the paper of Igarashi et al. [6], the dynamical matrix
of equation (11) was incomplete when λ = λ′. Similarly,
equation (12) in their paper for the force constant was
also incomplete in the last term for the second derivation
of the embedding function, two terms (for k �= i and k �= j)
were lost. However, in their actual calculations, the first
problem in equation (11) is corrected, the lost terms in
equation (12) are not considered.

Phonon spectra were calculated using the constructed
potentials for the wave-vectors parallel to three high sym-
metry directions, [001], [100] and [110], in the Brillouin
zone of the hexagonal lattice. The results, together with
available experimental data, are shown in Figure 8. The
experimental data are available only for Tb and Ho. The
calculated curves do capture important experimental fea-
tures, and there is in good agreement with experimen-
tal data for these two elements, which indicates that
the present potentials display reasonable lattice dynamics
behavior.
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Fig. 4. The total energies as a function of r/r1 for hcp rare earth metals. The solid curves are the results calculated from the
present potentials; the dashed curves are the results from the Rose equation.

 

 

 

 

 

Fig. 5. Lattice stability of hcp, fcc, bcc, and ideal c/a ratio hcp structures.

Table 3. Calculated values of lattice stabilities for hcp with ideal c/a ratio, fcc, and bcc crystal structures relative to the real
hcp structure (in eV/atom).

Element Dy Er Gd Ho Nd Pr Tb

HCP Present 0.0016 0.0019 0.0006 0.0018 0.0002 0.0002 0.0008

(ideal c/a) B-J [7] 0.0065 0.0055 0.0019 0.0054 0.0003 0.0001 0.0023

Present 0.0012 0.0013 0.0011 0.0017 0.0023 0.0024 0.0007
FCC

B-J [7] 0.057 0.054 0.029 0.053 0.012 0.008 0.031

Present 0.0110 0.0095 0.0101 0.0098 0.0063 0.0006 0.0093
BCC

B-J [7] 0.190 0.207 0.265 0.196 0.211 0.210 0.247
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Fig. 6. Relation between the structural energy difference
(Ehcp, idealc/a − Ehcp)/Ec and (1.633 - c/a).

3.3 Surface and stacking fault energy

Using the methodology of Ackland [12], the surface en-
ergy has been calculated and the results are summarized
in Table 4. The calculated surface energies for the basal
and prism planes are about equal, and their values are
small as comparing with those from other models. B-J
potentials [7] generally predicted a much high value of
surface energy for these metals, and ranged from 885 to
2328 mJ/m2 for different metals, great difference in sur-
face energy for these rare earth metals. However, the calcu-
lations from Miedema’s theory [18] and the present model
indicate that the difference of surface energy of these met-
als is small, and Miedema’s theory gave a somewhat higher
value of surface energy than the present potentials. The
surface tension near the melting point is also included in
this table [23], the present results are closed to these exper-
imental data. In general, the EAM or F-S potentials un-
derestimated the surface energy, for example in bcc met-
als [24,25].

Using the present potentials, the stacking fault ener-
gies I2, I1 and E have been calculated and are summarized
in Table 5. The present results are much lower than those
from B-J potentials [7], in a similar way as surface energy.
Attempts to adjust the potentials so as to achieve a high
stacking fault energy were unsuccessful due to problems
of lattice stability.

3.4 Vacancy and divacancy

The relaxed vacancy formation energy and formation vol-
ume have been calculated and are listed in Table 6 (The
unrelaxed vacancy formation energy is shown in brackets).
The difference of the vacancy formation energy between
relaxed and unrelaxed values are very small, ranges from
0.016 to 0.034 eV, less than 3%. The formation volume is
almost the same for these rare earth metals. The migration
energy for a vacancy is the difference between the energy

for an atom at the saddle point and that at its equilib-
rium site as it moves from its crystal site to the nearest
vacant site. For hcp metals, there are two saddle points in
this path, denoted as C and Bc respectively, which corre-
spond to the migration of an atom out of the basal plane
and in the basal plane. The present calculations for the
migration energies Eout

1m and Ein
1m, and then the activa-

tion energy for self-diffusion Qout
1v = Eout

1m + E1f (out of
plane) and Qin

1v = Ein
1m + E1f (in plane) are also shown

in Table 6. In general, the self-diffusion energy of out-of-
basal plane is not the same as that of in-basal plane. The
isotropic nature of vacancy migration is observed for Ti
and Co, and the migration in the basal plane is preferred
for Mg, however, the migration in the out-of-plane is pre-
ferred for Zr, as reviewed by Bacon [4,5]. Another report
for Zr is that the activation energy for self-diffusion to be
independent of a change in the c/a ratio and the migra-
tion in the basal plane was preferred [26]. In the previous
paper [14], we found that the isotropic nature of vacancy
migration is observed for Mg and Co whose c/a ratio is
close to the ideal value, and the migration in the out-of-
plane is preferred for Be, Hf, Re, Ru, Sc, Ti, Y and Zr.
It is the similar case for rare earth metals. The difference
of activation energy for self-diffusion between basal plane
and out-of-plane decreases almost linearly with increasing
c/a ratio as shown in Figure 9.

The divacancy formation and binding energies of the
first-nearest neighbors (FN) and the second-nearest neigh-
bors (SN) configurations are calculated and listed in Ta-
ble 7 (The data in brackets are unrelaxed values.) The
unrelaxed binding energy of divacancy is almost the same
as the relaxed one, and the value in the non-basal plane is
somewhat smaller that in basal plane, which implies the
divacancy was preferred to form in the basal plane. All
of them are positive, indicating that these configurations
are stable. However, the B-J potentials [7] predicted the
divacancy is unbound for these metals.

Two configurations (FN and SN) for the migration of
a divacancy are considered in a similar way as described
in the previous paper [14]. The results are shown in Ta-
ble 8. The diffusion activation energy difference for these
configurations is not too large, all paths are possible for
diffusion. The divacancy migration energy of j2 or j1 path
is the lowest in FN or SN configuration, respectively, so
j2 or j1 path may be the most favorable diffusion path
for FN or SN configuration. Since FN transforms to SN
after a j2 jump and SN converts to FN after a j1 jump,
continuous migration can proceed with these two jumps.

3.5 Self-interstitial atoms

Self-interstitial atom (SIA) formation energy has been cal-
culated for eight sites that have been suggested as possi-
ble interstitial positions by Johnson and Beeler [27]. The
results are listed in Table 9, where the initial site and
relaxed configuration are also shown. Note that some con-
figurations are unstable and transform to a stable one. Bt

transforms to Bc for all metals. T transforms to Bs or Bc.
Bo is stable for Dy, Er, Ho and Pr, it transforms to Bc for
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Fig. 7. Dependence of cohesive energy on c/a ratio at different values of the atomic volume for Dy.

Table 4. Calculated values of surface energy (mJ/m2).

Element Dy Er Gd Ho Nd Pr Tb

Basal Present 519 583 487 538 515 486 519

plane B-J [7] 2328 2318 1332 2180 1071 885 1515

Prism Present 517 578 482 536 508 481 514

plane B-J [7] 2238 2247 1286 2076 1150 945 1487

Miedema (average) [18] 1140 1170 1110 1150 1080 1080 1130

Gschneidner [23] 648 637 664 650 687 707 669

Table 5. Calculated values of the unrelaxed stacking fault energies (mJ/m2).

Element Dy Er Gd Ho Nd Pr Tb

I2 26.2 32.2 19.9 32.8 23.0 26.0 19.4

I1 13.1 16.1 9.9 16.4 11.5 13.0 9.7

E 39.3 48.3 29.8 49.2 34.5 39.0 29.1

B-J (I2) [7] 168 160 84 156 32 22 92

Table 6. Predicted monvacancy properties. The data in parentheses are unrelaxed values. The c/a ratios are listed for referring.

Element E1f (eV) Eout
1m (eV) Qout

1v (eV) Ein
1v (eV) Qin

1v (eV) Vf (ω0) c/a

1.216 (1.237)Dy 0.629 1.845 (1.866) 0.708 1.924 (1.945) 0.854 1.5741.25 (1.34) [7]

1.314 (1.339)Er 0.660 1.974 (1.999) 0.742 2.056(2.081) 0.851 1.5711.37 (1.45) [7]

1.138 (1.154)Gd 0.636 1.774 (1.790) 0.693 1.831 (1.847) 0.802 1.5911.25 (1.25) [7]

1.266 (1.288)Ho 0.646 1.912 (1.934) 0.731 1.997 (2.019) 0.854 1.5711.34 (1.38) [7]

1.230 (1.258)Nd 0.536 1.766 (1.794) 0.552 1.782 (1.810) 0.829 1.6131.01 (1.00) [7]

1.231 (1.255)Pr 0.475 1.706 (1.730) 0.488 1.719 (1.743) 0.842 1.6110.92 (0.91) [7]

1.179 (1.203)Tb 0.612 1.791 (1.815) 0.680 1.859 (1.883) 0.813 11.5831.29 (1.27) [7]
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Fig. 8. Phonon dispersion relations for [110], [100] and [001] directions in the Brillouin zone of the hexagonal lattice for hcp
rare earth metals. (a) Dy, (b) Er, (c) Gd, (d) Ho, (e) Nd, (f) Pr, and (g) Tb.
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Fig. 9. Dependence of the difference of diffusion energy along
basal and non-basal plane on c/a ratio.

Fig. 10. Dependence of the difference of SIA formation energy
between O and BS sites on c/a ratio.

Table 7. Calculated divacancy formation and binding energies (in eV/atom).

FN (out of plane) SN (in plane)

Metals Formation Binding Formation Formation Binding Formation

energy (eV) energy (eV) volume (Ω0) energy (eV) energy (eV) volume (Ω0)

2.269 (2.308) 0.163 (0.166) 1.718 2.258 (2.304) 0.174 (0.170) 1.699
Dy −0.66 [7] −0.70 [7]

Er 2.457 (2.502) 0.171 (0.176) 1.712 2.445 (2.497) 0.183 (0.181) 1.690

−0.64 [7] −0.68 [7]

2.123 (2.160) 0.153 (0.148) 1.633 2.116 (2.157) 0.160 (0.151) 1.619
Gd −0.39 [7] −0.31 [7]

2.360 (2.399) 0.172 (0.177) 1.723 2.350 (2.395) 0.182 (0.181) 1.700
Ho −0.59 [7] −0.63 [7]

2.290 (2.348) 0.170 (0.168) 1.605 2.284 (2.345) 0.176 (0.171) 1.600
Nd −0.37 [7] −0.38 [7]

2.281 (2.330) 0.181 (0.180) 1.619 2.275 (2.328) 0.187 (0.182) 1.632
Pr −0.30 [7] −0.31 [7]

2.208 (2.253) 0.150 (0.153) 1.633 2.198 (2.249) 0.160 (0.157) 1.618
Tb −0.44 [7] −0.47 [7]

other metals. C and S transform to Bs for Er and Ho, and
to form a dumbbell for others. Bc, Bs and O are the sta-
ble configurations for these metals. The formation energy
of Bs or Bc is the lowest, thus, the most stable SIAs are
Bc and Bs. On the other hand, the formation energy of O
is the largest. The difference of the formation energy be-
tween site O and Bs is small (the maximum is 0.176 eV for
Er), and it decreases linearly with increasing c/a ratio as
shown in Figure 10, a similar case as the vacancy diffusion
energy difference between basal and non-basal plane.

The lowest formation energy of SIA for these metals is
plotted against kTm in Figure 11. The formation energy
increases linearly as melting temperature increasing. This
gives a relationship between SIA formation energy and

kTm, i.e., Eif = 22.9kTm. Bacon [5] suggested that the
reasonable value of formation energy of SIA should fall in
the range of 18 − 25kTm from the calculations with the
pair and many-body potentials. The formation volume of
SIA in the eight configurations is also presented in Ta-
ble 9. The contribution from the relaxation volume varies
considerably from metal to metal.

4 Conclusions

(1) The EAM-type many-body potentials for seven hexag-
onal close-packed rare earth metals are constructed.

(2) Calculations of the mechanical stability of the corre-
sponding hcp lattice with respect to large changes of
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Table 8. Divacancy migration and diffusion activation energies (in eV/atom).

Dy Er Gd Ho Nd Pr Tb

EF N
j1 0.621 0.654 0.602 0.648 0.509 0.480 0.591

EF N
j2 0.508 0.537 0.503 0.527 0.415 0.380 0.486

EF N
j3 0.879 0.924 0.849 0.911 0.727 0.669 0.843

EF N
j4 0.769 0.807 0.768 0.794 0.684 0.626 0.749

EF N
j5 0.833 0.874 0.813 0.861 0.687 0.622 0.804

EF N
j6 0.735 0.772 0.739 0.757 0.650 0.588 0.718

QF N
2v Min. 2.777 2.994 2.626 2.887 2.705 2.661 2.694

Max. 3.148 3.381 2.972 3.271 3.017 2.950 3.051

ESN
j1 0.510 0.539 0.504 0.528 0.416 0.381 0.487

ESN
j2 0.692 0.728 0.657 0.723 0.530 0.497 0.653

ESN
j3 0.793 0.833 0.789 0.819 0.709 0.656 0.771

ESN
j4 0.750 0.786 0.753 0.772 0.669 0.607 0.732

ESN
j5 0.830 0.870 0.811 0.858 0.686 0.621 0.801

ESN
j6 0.806 0.846 0.787 0.833 0.658 0.593 0.777

QSN
2v Min. 2.768 2.984 2.620 2.878 2.700 2.656 2.685

Max. 3.088 3.315 2.927 3.208 2.970 2.896 2.999

Table 9. Calculated formation energies and volumes for self-interstitial atom at different positions.

Initial Element Dy Er Gd Ho Nd Pr Tb

position

Eif (eV) 3.287 3.462 3.309 3.344 2.665 2.204 3.222

BC Vif (Ω0) 1.188 0.969 1.555 1.118 1.130 0.681 1.398

Final position BC BC BC BC BC BC BC

Eif (eV) 3.421 3.567 3.309 3.467 2.665 2.251 3.222

BO Vif (Ω0) 1.251 1.020 1.548 1.184 1.116 0.815 1.397

Final position Bo Bo BC Bo BC Bo BC

Eif (eV) 3.286 3.459 3.309 3.343 2.665 2.204 3.222

BS Vif (Ω0) 1.162 0.981 1.564 1.118 1.143 0.734 1.400

Final position BS BS BS BS BS BS BS

Eif (eV) 3.287 3.462 3.309 3.344 2.665 2.204 3.222

BT Vif (Ω0) 1.190 0.995 1.558 1.117 1.159 0.755 1.401

Final position BC BC BC BC BC BC BC

Eif (eV) 3.368 3.459 3.363 3.343 2.688 2.238 3.288

C Vif (Ω0) 1.293 0.953 1.656 1.098 1.212 0.743 1.488

Final position Dumb BS Dumb BS Dumb Dumb Dumb

Eif (eV) 3.423 3.635 3.392 3.483 2.701 2.258 3.325

O Vif (Ω0) 1.355 1.111 1.760 1.304 1.208 0.767 1.588

Final position O O O O O O O

Eif (eV) 3.367 3.459 3.363 3.343 2.689 2.237 3.291

S Vif (Ω0) 1.248 0.930 1.658 1.090 1.241 0.750 1.517

Final position Dumb BS Dumb BS Dumb Dumb Dumb

Eif (eV) 3.287 3.462 3.309 3.343 2.665 2.204 3.222

T Vif (Ω0) 1.176 0.983 1.553 1.100 1.126 0.736 1.403

Final position BC BC BC BS BC BS BC
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Fig. 11. Relation between self-interstitial atom formation en-
ergy and melting temperature.

density and c/a ratio, and the structural stability of
the real hexagonal close-packed lattice relative to fcc,
bcc as well as the hcp structure with the ideal c/a ra-
tio shows that the fitted hcp lattice is the most stable
structure.

(3) Phonon dispersion curves were calculated for the [100],
[110] and [111] directions. They were in good agree-
ment with experimental data available.

(4) The calculated surface and stacking fault energies are
rather low as comparing with those from B-J poten-
tials.

(5) The activation energies for self-diffusion by mono-
vacancies and di-vacancies are calculated. j2 and j1
were the most favorable diffusion paths for the FN
and SN configuration, respectively, and a continuous
diffusion path could be formed with these two jumps.

(6) Formation energies and volumes were obtained for var-
ious interstitial configurations. Bc and Bs are the most
stable configurations. The SIA formation energy in-
creases linearly with increasing of the melting temper-
ature and it gives Eif = 22.9kTm.
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